Учет ЭМС при разработке высокочастотных печатных плат

Чтобы разработать печатную плату с малым уровнем шумов и минимальной чувствительностью к помехам, необходимо, во-первых, правильно организовать цепь земли, и во-вторых - грамотно скомпоновать печатную плату. Для любой печатной платы желательно иметь минимальный импеданс земли, чтобы обеспечить эффективное протекание токов при возникновении помех.
3448
В избранное

Прибыль в области потребительской электроники невысока, и производители стараются поддерживать невысокую стоимость изделий для сохранения конкурентоспособности. По этой причине они требуют от разработчиков использования недорогих печатных плат (ПП) и компонентов при сохранении желаемого функционала устройств. Производители считают, что обеспечение электромагнитной совместимости (ЭМС) при разработке ПП и применение компонентов с высоким уровнем ЭМС – это роскошь, которую они не могут себе позволить.

Многие полагают, что проблемы с ЭМС могут быть решены в конце цикла разработки за счет дополнительных компонентов, подавляющих электромагнитные помехи. Не всегда очевидно, что стоимость подобных исправлений на завершающих стадиях разработки будет во много раз превышать затраты на обеспечение электромагнитной совместимости на начальных этапах проектирования при создании ПП. Таким образом, стремление сократить затраты на материалы и компоненты фактически приведет к значительному увеличению стоимости изделия.

Чтобы разработать печатную плату с малым уровнем шумов и минимальной чувствительностью к помехам, необходимо, во-первых, правильно организовать цепь земли, и во-вторых - грамотно скомпоновать печатную плату. Для любой ПП желательно иметь минимальный импеданс земли, чтобы обеспечить эффективное протекание токов при возникновении помех. С другой стороны, именно грамотная компоновка является обязательным условием создания хорошей печатной платы. Правильная трассировка не только уменьшает импеданс проводников, но также позволяет избежать общей импедансной связи.

Высокочастотная печатная плата: цифровые цепи и шумы

Цифровые интегральные микросхемы (ИС), содержащие логические вентили, являются источником импульсных помех из-за задержек при выключении транзисторов. Каждый раз, когда логический вентиль меняет состояние, короткий импульс сквозного тока протекает через комплементарные транзисторы выходного каскада. Индуктивность земляных дорожек не позволяет току меняться скачком, что приводит к возникновению выброса напряжения.

Чтобы уменьшить влияние таких помех, все цифровые схемы должны иметь минимальный импеданс земли. Кроме того, рядом с каждой логической микросхемой должен быть установлен развязывающий компонент, который гарантирует, что контур протекания импульсного тока не будет распространяться до источника питания Vcc.

Импеданс земли можно уменьшить несколькими способами: снижая индуктивность проводящей дорожки, сокращая площадь токовых петель и уменьшая длину дорожек, по которым протекает ток. Частично это можно сделать за счет развязывающих компонентов, расположенных вблизи каждой логической микросхемы.

Уменьшение индуктивности проводников земли

Индуктивность проводника прямо пропорциональна его длине. Поэтому следует уменьшать длину дорожек, по которым протекают импульсные токи. Дополнительное снижение индуктивности возможно и за счет увеличения ширины дорожек питания. К сожалению, индуктивность обратно пропорциональна ширине дорожки, и такой подход оказывается не очень эффективным. В итоге именно длина дорожки является самым важным фактором с точки зрения обеспечения минимальной индуктивности.

Если пренебречь взаимной индуктивностью, то эквивалентная индуктивность двух одинаковых параллельных дорожек будет в два раза меньше. В случае четырех параллельных дорожек эквивалентная индуктивность окажется меньше в четыре раза. Однако существует предел при использовании такого подхода. Дело в том, что если дорожки находятся близко друг к другу, то взаимная индуктивность приближается к собственной индуктивности, и эквивалентная индуктивность не снижается. Впрочем, если дорожки располагаются на расстоянии в два раза больше их ширины, то может быть достигнуто снижение индуктивности на 25%.

Таким образом, в высокочастотной схеме следует обеспечить как можно больше альтернативных параллельных путей для протекания земляных токов. Если число проводников увеличивать бесконечно, то мы в итоге придем к слою сплошной земли. Использование отдельного слоя земли в многослойных платах позволяет разом решить огромное количество проблем.

Если речь идет о двухслойной плате, то приемлемый результат может быть достигнут за счет реализации земли в виде сетки (рис. 1). При этом самым лучшим будет вариант, когда дорожка земли проходит под каждой микросхемой по всей ее длине. Допускается использование вертикального шага сетки, равного длине ИС. Вертикальные и горизонтальные дорожки могут находиться на противоположных сторонах платы, но должны соединяться в узлах сетки с помощью переходных отверстии.

Земля выполнена в виде сетки

Рис. 1. Земля выполнена в виде сетки

Оказалось, что если в обычной двухсторонней печатной плате с 15 микросхемами земля выполнена в виде сетки, то земляной шум уменьшается в десять раз. Следовательно, все двухслойные печатные платы с цифровыми микросхемами должны использовать такое решение.

Уменьшение площади токовых петель

Другим методом уменьшения индуктивности является сокращение площади контуров протекания токов. Печатная плата с большим разомкнутым контуром (рисунок 2 а), является эффективным генератором помех. Кроме того, сама схема также будет чувствительна к внешним магнитным полям.

Рис. 2. a) неудачная компоновка печатной платы; б) улучшенная компоновка печатной платы

Рис. 2. a) неудачная компоновка печатной платы; б) улучшенная компоновка печатной платы

Рассмотрим контур питания, состоящий из двух одинаковых параллельных дорожек - дорожки питания Vcc и дорожки земли GND, - в которых токи протекают в противоположных направлениях. Их полная индуктивность (Lt) рассчитывается по формуле 1:

Lt = 2 (L - M)  (1)

где L – индуктивность каждой дорожки, а M – взаимная индуктивность.

Если располагать дорожки Vcc и земли близко друг к другу, взаимная индуктивность будет максимальной, а эффективная индуктивность снизится почти вдвое. В идеале на печатной плате дорожка Vcc должна идти параллельно дорожке земли. Это уменьшает площадь контура тока и помогает решить проблемы, связанные с генерацией шумов и чувствительностью к помехам.

На рис. 2 а показана неудачная компоновка печатной платы, а на рис. 2 б представлен улучшенный вариант. В нем за счет уменьшения площади контура удалось сократить длину дорожки и увеличить взаимную индуктивность, что позволило добиться снижения выбросов и восприимчивости к помехам.

Развязывающие конденсаторы

На рис. 3 а дорожки питания Vcc и земли расположены близко друг к другу. Тем не менее, путь импульсного тока, начинаясь и заканчиваясь на источнике питания, образует большой контур (зеленая область на рисунке), который может генерировать электромагнитные помехи. Если рядом с каждой ИС поместить развязывающий керамический конденсатор Cc, подключенный между цепями Vcc и земли, то он, выступая в качестве буферного элемента, обеспечит питание микросхемы в течение времени переключения, тем самым уменьшив контур протекания тока.

 Развязывающий конденсатор

Рис. 3. Развязывающий конденсатор

В идеале емкость развязывающего конденсатора должна составлять около 1 нФ. Следует использовать керамические конденсаторы, поскольку они способны отдавать заряд с очень большой скоростью. Высокий ток разряда и малая самоиндукция делают их идеальным выбором для развязки по питанию.

Если на плате размещено более 15 микросхем с развязывающими конденсаторами, то перезарядка этих конденсаторов может происходить достаточно медленно. Для ускорения этого процесса рекомендуется использовать большой общий развязывающий конденсатор, который будет перезаряжать все остальные развязывающие конденсаторы. Его емкость должна быть как минимум в десять раз больше суммы емкостей всех развязывающих элементов. Данный конденсатор также должен иметь малую индуктивность. Лучше всего для этих целей подходят танталовые или металлизированные поликарбонатные конденсаторы. О правильном выборе конденсатора можно узнать из статьи "Как выбрать конденсатор?". 

Импедансная связь в печатных платах

На рис. 4 показан пример импедансной связи при использовании общих шин питания и земли. В данной схеме аналоговый усилитель делит шины питания и земли с логическим вентилем. Импедансы дорожек показаны в виде сосредоточенных элементов (Zg и Zs). На повышенных частотах импедансы дорожек многократно возрастают. Это происходит не только из-за увеличения индуктивной составляющей, но и из-за роста сопротивления, вызванного скин-эффектом.

Общая импедансная связь

Рис. 4. Общая импедансная связь

Как мы видели ранее, выброс напряжения возникает всякий раз, когда переключается логический вентиль. Часть импеданса земли (Zg3) является общей как для усилителя, так и для логического вентиля, поэтому усилитель будет видеть этот импульс напряжения как шум в цепи питания. Этот шум может быть передан в схему усилителя либо непосредственно через вход питания, либо через общий импеданс Zg3. В результате шум появится непосредственно на входе усилителя. Для уменьшения общей импедансной связи следует либо уменьшить величину общего импеданса, либо полностью от него избавиться. 

Устранение общего импеданса

Общий импеданс можно устранить, используя соединение цепей питания разных схем в одной точке («звездой»), как показано на рисунке 5. Для этого необходимо сгруппировать схемы в зависимости от уровня их собственного шума и восприимчивости к помехам. Внутри каждой группы могут использоваться общие шины, но линии питания отдельных групп соединяются в одной точке. Такое соединение называется гибридным. Второй подход заключается в использовании отдельных источников питания для каждой группы схем, что дополнительно улучшает изоляцию между цепями.

Соединение в одной точке

Рис. 5. Соединение в одной точке

Сравнение позиций

  • ()