Каталог решений

forward

Датчик обнаружения пассажира автомобиля

Описание:
This solution was designed to be a broadly applicable automotive off-battery front end power supply for 10-15W systems. There is a focus on EMI/EMC testing and compliance as well to help designers satisfy the regulatory requirements associated with producing an automotive electronic subsystem.

Возможности:

Wide-Vin front end power supply for 10-15W systems Off-Battery operation with reverse battery protection Designed and tested for severe cold-crank operation Designed and tested to ISO 7637-2:2004 Pulse 1, 2a, 3a/b and 5b (clamped load dump) Tested for CISPR25 Conducted and Radiated Emissions

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:
Reverse polarity is standard protection required in an automotive environment. When battery cables are detached and reconnected there is a probability of connecting the wires to wrong terminals of the battery. This mistake could damage the components in Electronic Control Units (ECU). To avoid damage to the ECU there is a need for reverse polarity protection. Schotky diodes could be used but will have a constantly high power loss. This reference design uses the LM5050-Q1 along with n-channel mosfet to provide reverse polarity protection and reduce the power dissipation.
Возможности:

Reverse polarity protection for 12V/24V/48V Oring controller to connect multiple batteries Improves system efficiency and very low quiescent current Replaces the Schottky diode and reduces the power dissipation ISO7637-2 and ISO16750-2 compliant

Документация:
  • Схемотехника
  • BOM
Описание:
The TIDA-01425is a subsystem reference design for automotive gateways focused on increasing bandwidth and processing power in gateway applications. The design implements ethernet physical layer transceivers (PHYs) for increased bandwidth along with an automotive processor for greater processing capabilities allowing automotive gateways to pass more data at higher speeds. Furthermore, the reference design offers a starting point for a full automotive gateway design with a full power tree, CAN PHYs, and components selected with automotive requirements and emission specifications in mind to simplify the design process.
Возможности:

Processor based system 100BASE-TX and CAN PHYs Operates off automotive battery Designed to operate through cold crank, jump start, and load dump Reduced EMI power stages Reverse battery protection

Документация:
  • Схемотехника
  • BOM
Описание:
The TIDA-01428 reference design implements a 1-A, wide-VIN, buck converter to 3.3 V followed by a compact, low-input voltage, fixed 5-V boost converter for powering a controller area network (CAN) physical layer interface. The design has been tested for CISPR 25 radiated emissions and conducted emissions using the voltage method and for immunity to bulk current injection (BCI) per ISO 11452-4 with CAN communication operating at 500 KBPS. The TIDA-01428 is an EMC-vetted power tree plus CAN reference design that can be used in many automotive applications. A system basis chip (SBC) is an integrated circuit (IC) that combines many typical building blocks of a system, which includes transceivers, linear regulators, and switching regulators. While these integrated devices can offer size and cost savings in a number of applications, the integrated devices do not work in every case. For applications where an SBC is not a good fit, it might be beneficial to build a discrete implementation of these aforementioned building blocks thus making a discrete SBC.
Возможности:

Wide-input voltage, fixed 3.3V buck converter Low-input voltage, fixed 5V boost converter Passes Class 4 CISPR 25 radiated emissions Passes Class 4 CISPR 25 conducted emissions Maintains regulated 3.3V and 5V supplies through battery input voltages down to 4.3V Able to survive load dump voltages up to 42V

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:
The TIDA-01429 reference design implements a wideinput voltage boost controller, followed by a wide input voltage buck converter set to 5.0 V. The 5.0 V supply is used for powering a Controller Area Network (CAN) transceiver and a compact fixed 3.3 V linear drop-out (LDO) regulator for supplying the C2000 microcontroller. This design has been tested for CISPR 25 radiated emissions per absorber lined shielded enclosure (ALSE) method, CISPR25 conducted emissions via the voltage method, and for immunity to Bulk Current Injection (BCI) per ISO 11452-4, all with CAN communication operating at 500 KBPS. This is a electromagnetic compliance (EMC) vetted 3-stage power tree with controller area network (CAN) reference design that can be used in many automotive applications requiring operation with input voltages as low as 3.5 V. A system basis chip (SBC) is an integrated circuit (IC) that combines many typical building blocks of a system, which includes transceivers, linear regulators, and switching regulators. While these integrated devices can offer size and cost savings in a number of applications, the integrated devices do not work in every case. For applications where an SBC is not a good fit, it might be beneficial to build a discrete implementation of these aforementioned building blocks thus making a discrete SBC.

Возможности:

Wide input voltage, adjustable boost controller Wide input voltage, fixed 5V buck converter Passes Class 5 CISPR 25 radiated emissions Passes Class 4 CISPR 25 conducted emissions Maintains regulated 3.3V and 5V supplies through battery input voltages down to 3.5V Able to survive load dump voltages up to 40V

Документация:
  • Схемотехника
  • BOM
  • Топология платы
Описание:
This processor supply reference design is an automotive power solution for use in highperformance, single-core-voltage application processors in advanced driver assistance systems (ADASs). This design can support core supply currents up to 10 A at 0.9 V. The design can also operate with a wide input voltage range, withstand reverse battery conditions, and support start-stop and cold-crank down to a 3.5-V input with an undisturbed output. All switching frequencies in this solution are above 2 MHz. The design has an inherently lower electromagnetic interference (EMI) and higher efficiency due to the multi-phase configuration and integration of supplies. This reference design also provides results for conducted emissions tests for CISPR 25 Class 5.
Возможности:

5A integrated 2.2MHz synchronous wide input voltage buck converter Smart diode reverse battery protection for minimum voltage drop (typical 20mV) Operating range 3.5 - 36V, supports start-stop and cold-crank Interleaved four-phase core-voltage supply minimizing ripple, EMI and inductor size Optimized for CISPR 25 Class 5 conducted emissions Small switched cap boost for 5V CAN supply reduces solution size and BOM cost

Документация:
  • Схемотехника
  • BOM
Описание:
TI Design TIDEP-0092provides a foundation for short-range radar (SRR) applications using the AWR1642 evaluation module (EVM). This designallows the estimation of the position (in the azimuthal plane) and velocity of objects in its field of view up to 80 m.
Возможности:

Single-chip radar for SRR applications Detect objects (such as cars and motorcycles) up to 80 m awaywith range resolution of 35 cm Antenna field of view ±60° with angular resolution of approximately 15° Source code for fast Fourier transform (FFT) processing and detection provided by mmWave software development kit (SDK) AWR1642EVM demonstrates the design Radar front-end and detection configuration fully explained

Документация:
  • Даташит
  • Схемотехника
  • BOM
  • Тестирование

Сравнение позиций

  • ()